Скорость мухи, как летает муха

Когда обсуждается тема полета, сразу же на ум приходят птицы. Тем не менее, птицы – это не единственные существа, которые могут летать. Многие разновидности насекомых наделены способностями, превосходящими возможности птиц. Бабочка монарх может пролететь от Северной Америки в Мексику. Мухи и стрекозы могут зависать в воздухе.

Эволюционисты утверждают, что насекомые начали летать 300 миллионов лет тому назад. Несмотря на это, они не могут предоставить убедительный ответ на такие существенные вопросы, как: каким образом у первого насекомого образовались крылья? как они начали летать и зависать в воздухе?

Скорость мухи, как летает муха

Эволюционисты только утверждают, что некоторые слои кожи, возможно, превратились в крылья.

Осознавая необоснованность своих утверждений, они также утверждают, что окаменелые экземпляры, подтверждающие макроэволюцию, пока еще не имеются в наличии.

Тем не менее, совершенный дизайн крыльев насекомых не оставляет места для случайности или совпадения. В статье под названием «Механический дизайн крыльев насекомых» английский биолог Робин Вуттон пишет:

«Чем лучше мы понимаем функционирование крыльев насекомых, тем изысканнее и более красивым предстает перед нами дизайн… Структуры обычно проектируются для минимальной деформации; механизмы создаются для передвижения составных компонентов предсказуемым образом.

Крылья насекомых объединяют два в одном, используя компоненты с широким диапазоном свойств эластичности, изящно скомбинированных для соответственных деформаций в ответ на соответственные силы и для того, чтобы как можно лучше использовать воздух».

(Робин Вуттон, “Механический дизайн крыльев насекомых”, Scientific American, том 263, ноябрь 1990, стр. 120)

С другой стороны, не существует ни единого доказательства в пользу эволюции со стороны окаменелостей. Вот на что ссылался известный французский зоолог Пьер Поль Грассе, когда утверждал: «Мы в темноте относительно происхождения насекомых». А сейчас давайте рассмотрим несколько интересных свойств этих существ.

Механика полета

Крылья мух начинают вибрировать согласно электрическим сигналам, которые проводятся нервами. Например, у кузнечика каждый из этих нервных сигналов проявляется в одном сокращении мышцы, которая в свою очередь двигает крыло. Две группы противоположных мышц, известных как «подниматель» и «опускатель», помогают крыльям подниматься и опускаться, натягивая в противоположные стороны.

Кузнечики машут своими крыльями 12-15 раз в секунду, но меньшим насекомым нужна более высокая скорость, чтобы летать.

Например, в то время когда пчелы, осы и мухи машут своими крыльями 200-400 раз в секунду, скорость достигает 1000 раз в секунду у мошек и у некоторых паразитов длиной в 1 мм.

Еще одно очевидное свидетельство сотворения – это миллиметровое летающее существо, которое может махать своими крыльями с невероятной скоростью в 1000 раз за секунду без загорания, разрывания и изнашивания.

Когда мы детальнее рассматриваем этих летающих существ, то наше изумление от дизайна еще более увеличится.

Упоминалось, что их крылья приводятся в действие с помощью электрических сигналов, проходящих через нервы. Однако нервная клетка может передавать только максимум 200 сигналов за секунду. Как же тогда возможно этим маленьким летающим существам достигать 1000 взмахов в секунду?

Мухи, которые машут крыльями 200 раз за секунду, обладают нервно-мышечной взаимодействием, которое отличается от того, что обнаруживается в кузнечиках. Здесь один сигнал проводится для каждых десяти взмахов крыльями.

В дополнение, мышцы, известные как волокнистые, работают отличительно от мышц кузнечика.

Нервные сигналы только предупреждают мышцы о приготовлении для полета, и когда они достигают определенного уровня напряжения, они сами расслабляются.

У мух, пчел и ос существует система, которая превращает взмахи крыльев в «автоматические» движения. Мышцы, обеспечивающие полет у этих насекомых, не прикреплены непосредственно к костям тела.

Крылья присоединяются к грудной клетке с помощью сочленения, действующего в качестве стержня. Мышцы, которые двигают крылья, присоединяются в нижней и верхней поверхности грудной клетки.

Когда эти мышцы сокращаются, грудная клетка двигается в противоположном направлении, что в свою очередь создает нисходящую тягу.

Расслабление группы мышц автоматически проявляется в сокращении противоположной группы, затем снова следует расслабление. Другими словами, это «автоматическая система». Таким образом, движения мышц продолжаются без остановки до тех пор, пока не поступит от нервов противоположный сигнал, контролирующий систему.

Механизм полета такого рода можно было сравнить с часами, которые работают на основе витой пружины. Части настолько стратегически размещены, что даже единственное движение легко приводит крылья в движение. В этом примере невозможно не увидеть безупречный дизайн. Идеальное творение Господа очевидно.

Скорость мухи, как летает муха

Некоторые мухи машут крыльями до 1000 раз в секунду. Для того чтобы облегчить это необычное движение, была создана специальная система. Вместо того, чтобы непосредственно двигать крыльями, мышцы активизируют специальную ткань, к которой присоединены крылья с помощью похожего на стержень сочленения. Эта особенная ткань помогает крыльям махать большое количество раз при одном ударе.

Системы в основе движущей силы

Для того чтобы поддерживать ровный полет, не достаточно просто махать крыльями вверх и вниз. Крылья должны менять углы во время взмаха, чтобы создать двигающую силу, а также подъемную силу.

Крылья имеют достаточную гибкость для вращения, в зависимости от разновидности насекомого. Основные мышцы, регулирующие полет, которые также продуцируют необходимую энергию, обеспечивают эту гибкость.

Например, поднимаясь вверх, эти мышцы между суставами крыльев сокращаются далее, чтобы увеличить угол крыла.

Произведенные исследования, использующие технологию высокоскоростной съемки, обнаружили, что во время полета крылья следовали эллиптической траектории.

Другими словами, муха не только машет своими крыльями вверх и вниз, но она также машет ими по кругу, как при гребле лодки. Это движение достигается с помощью основных мышц.

Величайшей проблемой, с которой сталкиваются виды насекомых маленьких размеров, является инерция, достигающая значительных размеров. Воздух как будто прилипает к крыльям этих маленьких насекомых и очень понижает эффективность работы крыла.

Поэтому некоторые насекомые, размер крыла которых не превышает одного миллиметра, должны махать крыльями до 1000 раз за секунду, чтобы преодолеть инерцию.

Исследователи считают, что даже такой скорости не достаточно, чтобы поднимать насекомое, и что они используют также другие системы. Как пример рассмотрим вид маленьких паразитов, Encarsia, использующих так называемый метод «хлопай и отставай».

При этом методе крылья вместе хлопают (машут) в верхней части взмаха и потом отделяются. Передние края крыльев, где находится твердая жилка, отделяются первыми, разрешая потоку воздуха проникать сквозь внутреннюю зону с высоким давлением.

Этот поток воздуха создает вихрь, помогая силе тяги хлопающих крыльев. (Энциклопедия науки и технологии, стp. 2679)

Существует другая особенная система, созданная для насекомых с целью поддерживания стабильного положения в воздухе. Некоторые мухи имеюттолько пару крыльев и круглые по форме органы на спинке, которые называются жужжальцами.

Жужжальца вовремя полета производят удары как нормальные крыло, но не производят никакой подъемной силы, как это делают крылья. Жужжальца двигаются при изменении движения, и не дают насекомому сбиться с пути.

Система похожа на гироскоп, который используется для навигации в современных самолетах. (См. Почему Муха летает как Муха?)

Скорость мухи, как летает муха насекомые могут складывать свои крылья. В сложенном состоянии ими легко маневрировать с помощью вспомогательных частей на их кончиках. Авиационные силы США создали самолет со складными крыльями после того, как были вдохновлены этим примером. В то время как пчелы и мухи могут полностью складывать свои крылья на себя, такой самолет может складывать только одну часть крыла на другую половину.(См. также статью Пчелиные чудеса)

Резилин

Сустав крыла включает в себя специальный протеин, который называется резилином, обладающий чрезвычайной гибкостью. В лабораториях инженеры-химики работают над созданием этого химического элемента, который обладает свойствами гораздо лучше природной или искусственной резины.

Резилин – это субстанция, которая может поглощать силу, применяемую к ней, а также высвобождает всю энергию обратно, как только сила убирается. С такой точки зрения эффективность резилина достигает 96 %.

Таким образом, примерно 85% энергии, которая используется для поднятия крыла, сберегается и высвобождается во время его опускании. (Энциклопедия науки и техники, стp. 2678)

Стенки грудной клетки и мышцы также построены таким образом, чтобы способствовать действию этого феномена. Мусорной мушке необходимо большое количество энергии, чтобы осуществлять 1000 взмахов за секунду.

Эта энергия находится в богатых углеводом питательных веществах, которые собираются с цветов.

Поскольку мушки имеют желтые и черные полоски, из-за чего они похожи на пчел, им удается избегать внимания разных нападающих насекомых.

Особенная дыхательная система у насекомых

Мухи летают с чрезвычайной скоростью, по сравнению с их размерами. Стрекозы могут летать со скоростью 25 миль в час (40 км. в час). Даже насекомые поменьше могут достигать 31 мили в час (50 км. в час).

Эти скорости эквивалентны скорости людей, которые передвигаются со скоростью 1000 миль в час. Люди могут достигнуть такой скорости только при использовании реактивного самолета.

Тем не менее, если принять во внимание размеры реактивного самолета по сравнению с размерами людей, становится ясно, что эти мухи летают с большей скоростью, чем даже самолеты.

Реактивные самолеты используют специальное топливо, чтобы питать энергией свои скоростные двигатели. Полет мух также требует высокого расхода энергии. К тому же существует потребность в больших объемах кислорода для сжегания этой энергии. Потребность в большом количестве кислорода удовлетворяется необычной дыхательной системой, которая находится в телах мух и у других насекомых.

Дыхательная система работает по-другому, чем наша с вами. Мы дышим через легкие. Здесь кислород смешивается с кровью, а дальше кровь его несет ко всем частям тела.

Читайте также:  Средство от клещей тайга: инструкция по применению и отзывы

Потребность мухи в кислороде для полета настолько велика, что нет времени ждать, пока кровь доставит его клеткам. Чтобы разобраться с этой проблемой, существует специальная система. Дыхательные трубки в теле насекомых переносят воздух к разным частям тела мухи.

Точно так же, как система кровообращения в нашем теле, здесь существует сложная и запутанная сеть трубочек (называемая трахейной системой), которая поставляет насыщенный кислородом воздух каждой клетке тела.

Благодаря такой системе, клетки, составляющие летные мышцы, берут кислород прямо из этих трубочек. К тому же данная система помогает охлаждать мышцы, функционирующие со столь высокой скоростью.

Скорость мухи, как летает муха

Существует невероятная система, созданная в телах насекомых, чтобы удовлетворить требования повышенной поставки кислорода: воздух, так же как и в кровообращении, заносится непосредственно в ткани с помощью специальных трубочек. Здесь приводится пример такой системы у кузнечиков:

А) дыхательное горло кузнечика изображено с помощью электронного микроскопа. Вокруг стенок горла есть спиральное усиление, похожее на шланг пылесоса.

Б) каждая трубочка дыхательного горла поставляет кислород в клетки тела насекомых и устраняет углекислый газ.

Очевидно, что система является примером Сотворения. Никакой случайный процесс не может объяснить этот сложный дизайн. Невозможно, чтобы эта система развивалась поэтапно, как предлагает эволюция.

Если только не имеется в наличии функционирующая трахейная система, никакое промежуточное состояние не будет приносить пользу существу, а наоборот, будет приносить ему вред, делая его систему нефункциональной.

Скорость мухи, как летает муха

Все системы, которые мы рассмотрели, одинаково показывают, что здесь присутствует необычайный дизайн даже в таких маловажных существах, как мухи. Любая отдельно взятая муха – это чудо, которое свидетельствует о наличие безупречного дизайна в Господнем творении. С другой стороны, «процесс эволюции» не может объяснить, как развилась даже одна единственная система у мух.

Источник-www.designanduniverses.com

Почему муху так сложно прихлопнуть?

Скорость мухи, как летает муха

Попробуйте прихлопнуть муху, и вскоре вы убедитесь, что она быстрее вас. Намного быстрее. Но каким же образом эти крохотные существа с их мельчайшим мозгом так легко нас обманывают?

Вы, вероятно, размышляли об этом, после того, как бегали за мухой по всему дому, размахивая тапком, и раз за разом неудачно им хлопая. Как она так быстро двигается? Она что, читает мои мысли?

Этот вопрос был освещён в последнем эпизоде нашей передачи BBC World Service CrowdScience, где рассказывалось о суперспособностях маленьких животных. Суть ответа состоит в том, что по сравнению с нами, мухи воспринимают наш мир в замедленном виде.

Для иллюстрации обратите внимание на часы с секундной стрелкой. Человек видит перемещения стрелки с определённой скоростью. Для черепахи эта скорость в два раза больше. Для большей части видов мух каждое тиканье часов длится примерно в четыре раза дольше. Воспринимаемая скорость времени у разных видов разная.

Это происходит оттого, что животные воспринимают окружающий их мир в виде непрерывного видео. На самом деле они строят эту картинку на основе изображений, поступающих из глаз в мозг в виде отдельных вспышек, определённое количество раз в секунду. У человека происходит примерно 60 таких вспышек в секунду, у черепах – 15, у мух – 250.

Всё относительно

Скорость, с которой эти изображения обрабатываются мозгом, называется “скоростью слияния мельканий”. Обычно, чем меньше вид, тем больше у него скорость слияния – и тут мухи нас сильно опережают.

Профессор Роджер Харди из Кембриджского университета изучает работу глаз мухи, и у него есть эксперимент для определения скорости слияния мельканий.

Скорость мухи, как летает муха

«Скорость слияния мельканий – это просто мера того, как быстро нужно отключать и включать обратно свет, чтобы он казался непрерывным», – говорит профессор Харди.

Роджер вставляет крохотные стеклянные электроды в живые светочувствительные клетки глаз – фоторецепторы – а затем использует светодиоды, мигающие со всё увеличивающейся скоростью.

Каждая вспышка светодиода вызывает небольшой электрический ток в фоторецепторах, и его можно увидеть на экране компьютера.

Тесты показывают, что наиболее быстрые мухи реагировали на мигание, происходящее до 400 раз в секунду – это больше, чем в шесть раз превышает нашу скорость.

Самое быстро зрение из всех было обнаружено у мух, которых буквально называют «мухи-убийцы» [судя по всему, имеется в виду вид Coenosia attenuata, т.н. муха-охотник, происходящая с юга Европы / прим. перев.].

Это небольшие хищные мухи, живущие в Европе, ловящие других мух в воздухе, и обладающие сверхбыстрой реакцией.

В мушиной лаборатории Кембриджского университета доктор Палома Гонзалес-Беллидо демонстрирует охоту мух-убийц, выпуская в специальный бокс для съёмки жертв в виде плодовых мушек.

Палома записывает их поведение на скорости в 1000 кадров в секунду при помощи специальной камеры. Соединённый с нею компьютер записывает видео, которое перезаписывается каждые 12 секунд. Во время движения мухи Палома нажимает кнопку, если хочет, чтобы последние 12 секунд видео записались надолго.

«Наше время реакции настолько плохое, что если бы мы захотели остановить видео, думая, что что-то происходит, оно бы уже произошло», – говорит Гонзалес-Беллидо. Мы даже не успеваем нажать кнопку до того, как всё произойдёт – настолько это быстро.

  • Муха против мухи
  • Попав в бокс с жертвами, муха-убийца сначала сидела неподвижно, но как только плодовая мушка пролетела в 7 см от неё, сделала резкое движение, и внезапно муха-убийца оказалась на дне коробки, пережёвывая дрожащую мушку.
  • Только при просмотре замедленного видео на компьютере стало понятно, что произошло: муха-убийца взлетела, облетела плодовую мушку вокруг три раза, постоянно пытаясь схватить, а затем ей всё же удалось схватить её за передние лапки.

И вся эта история заняла всего одну секунду. Глаза воспринимают это как мелькание, поэтому хлопающая рука человека для мухи должна двигаться с черепашьей скоростью.

Скорость мухи, как летает муха Скорость мухи, как летает муха

Чтобы муха-убийца могла двигаться так быстро, опережая даже других мух, светочувствительные клетки в её глазах содержат гораздо больше митохондрий («батареек» биологических клеток”), чем у других мух.

Это батареи, питающие клетку, поэтому быстрое зрение должно отнимать больше энергии, чем медленное. Это объясняет, почему глаза просто не установлены в режим самого быстрой работы из возможных.

Плотоядная диета мух-убийц даёт им много энергии, необходимой для питания высокоэнергетических клеток. Но даже если бы в клетках наших глаз было столько же митохондрий, у нас не было бы такого скоростного зрения, поскольку светочувствительные клетки мух устроены совсем по-другому, не как у позвоночных.

Причиной структурных различий в строении глаз является эволюция. У членистоногих и позвоночных, групп для мух и людей соответственно, эволюция глаз шла раздельно последние 700-750 млн лет.

Теория струн

Глаза мух эволюционировали, чтобы воспринимать свет через набор крохотных струноподобных структур, расположенных горизонтально по пути следования света в глазу. Эти структуры механически реагируют на свет, в то время как у позвоночных есть вытянутые клетки, похожие на трубочки, направленные в сторону света, в которых на свет реагируют химические соединения.

Роджер в своей лаборатории изучает структуру глаза мухи. «Он более чувствительный, в том смысле, что способен выдавать большой сигнал для самого малого количества света, а также он может реагировать быстрее, чем палочки и колбочки в глазу позвоночных», – поясняет он.

Скорость мухи, как летает муха

Этой повышенной чувствительности есть несколько причин, но именно Харди обнаружил, что они реагируют на свет механически, а не химически, как колбочки и палочки.

Механическое реагирование позволяет быстрее создавать нервные сигналы. Кроме того, существует ограничение скорости, с которой нервные импульсы могут идти – и короткое расстояние между глазом и мозгом мухи ускоряет процесс по сравнению с крупными позвоночными.

У некоторых позвоночных зрение быстрее нашего. Судя по всему, умение летать коррелирует со скоростью зрения, как и малый размер. Возможно, это связано с тем, что небольшие летающие животные должны уметь быстро реагировать в полёте, чтобы избегать приближающихся препятствий.

  1. Замедленные хлопки
  2. Самое быстрое зрение обнаружено у видов, ловящих мух в воздухе.
  3. Исследуя зрение мухоловки-пеструшки, небольшой птички отряда воробьинообразных, ловящей мух на лету, учёные из Университета в Упсала в Швеции обнаружили, что она способна различать мигание света со скоростью 146 раз в секунду.

Птиц дрессировали так, чтобы они связывали мигающий свет с угощением, и они успешно отличали мигающий свет до скоростей 146 раз/с. Это примерно в два раза быстрее, чем могут видеть люди, но не так быстро, как у средней мухи. А это значит, что птицы, как и мухи, воспринимают каждое тиканье часов медленнее людей.

На мухоловок давит эволюция, заставляя воспринимать ход времени так медленно, как это возможно, чтобы опередить их быструю добычу. В ходе эволюции птицы, воспринимающие время медленнее, могут быстрее реагировать на добычу, едят больше, выращивают больше птенцов и передают скоростное зрение будущим поколениям.

Читайте также:  Барьер от клопов - что это, описание лучших вариантов защиты

Мухи, которых ловят птицы с быстрым зрениям, тоже будут вырабатывать ускоряющуюся реакцию, чтобы избежать поимки. Эта эволюционная гонка вооружений идёт больше, чем существуют сами птицы. Мухи, бывшие добычей, вырабатывали быстрое зрение, чтобы избежать поимки хищных мух с тех пор, как они научились летать.

В следующий раз, когда вы безуспешно попытаетесь прихлопнуть муху, не расстраивайтесь. Ваше неуклюжее и медленное движение встретилось с миллионами лет естественного отбора, который позволил мухам воспринимать ваши попытки в замедленном виде. В общем, для вас и для мухи время, судя по всему, идёт относительно.

POST ORIGINAL'

Муха Мухобойка Газеты Тапки Нейросигналы Зрение Колбочки Палочки Длиннопост Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам:

Полет насекомых | Справочник по защите растений AgroXXI

Скорость мухи, как летает мухаСочленение крыла с телом

Способность к полетам выработалась у насекомых на протяжении эволюции: как известно, наиболее примитивные отряды могут передвигаться лишь при помощи ног, так как не имеют крыльев. Перемещение по воздуху более выгодно в плане скорости, и на него, к тому же, тратится куда меньше энергии, чем на ходьбу.

Для осуществления полета крылья должны иметь особое расположение и возможность свободно двигаться. Как известно, крыловые пластинки прикрепляются к мембране на задней части груди (птероторакса), располагаясь по боковой поверхности соответствующего сегмента, на границе его тергита и плейрита.

Плейрит обладает свойством растяжимости, а тергит способен несколько смещаться вверх и вниз относительно плейрита, поэтому каждое крыло имеет возможность совершать взмахи с амплитудой до 180 градусов.Основание крыловой пластинки погружено внутрь тела.

Это один из важных факторов, благодаря которым возможен полет.

Крыло насекомых можно сравнить с двуплечим рычагом.

Короткое плечо представлено его внутренней частью (основанием), которая скрыта под мембраной, а длинное располагается снаружи: собственно, эту видимую часть и принято считать крылом.

На внутренней поверхности экзоскелета, сразу под местом сочленения крыла с телом, находится плотный выступ, который называют плейральным столбиком; данная структура играет роль точки опоры при взмахе крыльев.

Когда насекомое собирается расправить крылья, оно сокращает специальные мышцы (крыловые мышцы), прикрепленные к спинке. Спинка перемешается немного вниз, надавливая на внутреннюю часть крыловой пластинки.

Она, в свою очередь, упирается в плейральный столбик. При этом основание крыла опускается, а его наружная часть одновременно идет вверх.

Если же необходимо опустить крыло, спинка снова поднимается, и все приходит в исходное положение.

В области сочленения крыловой пластинки с телом находится несколько мелких склеритов – сочленовых пластинок (аксиллярные и промежуточная).

Они укрепляют основание крыла и обеспечивают его гибкое и подвижное соединение с телом.

В результате насекомое может не только перемещать крыло вверх и вниз, но и совершать движения в любых плоскостях (спереди назад, ротационные движения), а также особым образом складывать крылья в состоянии покоя.

Взаимодействие крыльев во время полета

Насекомые перемещаются либо с помощью четырех (жуки, бабочки), либо с помощью двух крыльев. Обычно пара крыловых пластинок, расположенная на одной стороне тела, при расправлении образует единую летную поверхность.

Исключение составляют лишь некоторые представители класса. Например, среди стрекоз есть как равнокрылые, у которых крылья движутся одинаково, так и разнокрылые – у них каждое крыло перемещается по-своему.

(видео)

Полет насекомых – Пчела в полете

Разделение полета на разновидности может проводиться с разных точек зрения. Например, в зависимости от его цели специалисты выделяют два основных типа:

  • тривиальный (обыденный) – полет с целью добычи питания, поиска партнера для размножения и др.
  • миграционный – полет, осуществляемый для поиска новых мест обитания.

Эта градация не относится к самым удачным, так как она не отражает особенностей работы крылового аппарата насекомого в том или ином случае.

Так, и саранча, и бабочки могут мигрировать на большие расстояния, однако конкретные способы, которыми они это делают, отличаются, и это надо учитывать.

По этой причине самой удобной представляется функциональная классификация полета на пассивные и активные способы.

Пассивный полет

– осуществляемый без активной работы мышц, под воздействием силы тяжести, воздушных потоков или накопленной в активном полете кинетической энергии (силы инерции).

Он бывает:

  • парашютирующий: насекомое активно взлетает вверх, набирая определенную высоту, а затем определенным образом расправляет крылья, создавая сопротивление воздуху, и медленно снижается, как на парашюте. При этом движению вниз оно препятствует не только при помощи расправленных крыльев, но и придавая определенное положение конечностям или хвостовым нитям. Такой полет характерен, например, для поденок и мошек, которые «практикуют» его в период роения.
  • планирующий: насекомое разгоняется, а затем останавливает взмахи крыльев, расставляя их в стороны. Благодаря разгону движение еще какое-то время продолжается; оно направлено вперед, с постепенным снижением. Планирующий полет характерен для насекомых с крыльями большой площади, например, бабочек.
  • парящий: он отличается от планирующего тем, что насекомое использует в ходе перемещения токи воздуха, таким образом, во время парения происходит движение вперед и вверх, а не вперед и вниз. Таким образом часто летают стрекозы.
  • дрейфующий: этот полет, как и парящий, невозможен без сил внешней среды. Под действием ветра и вертикальных потоков воздуха мелкие насекомые (мошки, тля) могут преодолевать значительные расстояния, до десятков тысяч километров. Это способствует их расселению, но иногда может быть для них и губительным: они не способны сопротивляться сильному ветру и погибают, если ток воздуха принесет их в воду или по пути они будут уничтожены хищниками. Дрейфующий полет – единственная возможность путешествия по воздуху для бескрылых насекомых, а также личинок.

Активный полет

: он возможен благодаря активным движениям крыльев. Насекомое осуществляет крыловые удары, которые и обеспечивают его перемещение вперед и вверх.

Активное перемещение разделяют на две основных разновидности:

  • машущий полет – осуществляемый при помощи высокоамплитудных взмахов крыльями, во время него насекомое движется относительно земли.
  • стоячий (трепещущий) полет – насекомое производит крыльями мелкие движения, при этом оно висит в воздухе, но не летит вперед.

Способность к машущему полету имеют все крылатые отряды, а стоячий могут продемонстрировать лишь мухи, бабочки и некоторые другие, довольно немногочисленные насекомые. При этом во время стояния на месте кончик крыла описывает фигуру восьмерки. Если же насекомое смещается вперед, эта фигура «растягивается», и крыло «рисует» синусоиду. (видео)

Скорость мухи, как летает мухаБражник

Казалось бы, чем легче насекомое, тем быстрее оно должно летать, но в живой природе все нередко происходит наоборот. Чем меньше размеры у летуна, тем труднее ему противиться току воздуха, и тем больше усилий надо прикладывать для перемещения. Поэтому быстрее всего летают средние и крупные мухи, бабочки и стрекозы.

Жуки им в этом уступают: с увеличением размера тела Жесткокрылые становятся более тяжелыми и неповоротливыми. Так, например, бабочка бражника в полном безветрии способна перемещаться на 15 м за одну секунду (54 км/ч) , а у майского хруща в тех же условиях скорость полета оказывается «всего» 3,5 м/с (12,6 км/ч).

Насекомые летают достаточно быстро, и их проворность напрямую зависит от активности работы крылового аппарата. Чем больше крылья и чем легче тело, тем меньше крыловых биений требуется для движения.

Например, для бабочки махаона частота взмахов крыльев в секунду составляет 85, а шмель, с его тяжелым телом и маленькими крылышками, вынужден совершать до 240 биений в секунду.

Двукрылым, которым по понятным причинам требуется работать крыльями еще интенсивнее, приходится быть активнее: так, комар-дергун машет крыльями 1046 раз в секунду.

Внешние условия, такие, как ветер и дождь, очень сильно влияют на возможность полета. Обычно насекомые стараются не взлетать при неблагоприятных условиях среды. Однако у некоторых существуют весьма необычные взаимоотношения с природными явлениями.

Например, при скорости ветра до 0,7 м/с синие мясные мухи летают очень активно – такая интенсивность течения воздушных потоков действует на них стимулирующее.

Однако, как только показатель достигнет больших величин, полет у этих Двукрылых сразу же становится крайне непопулярным занятием.

Во время расселения или миграций насекомые порой могут совершать достаточно длительные перелеты, но на это способны не все. Например, большинство мух в спокойных условиях преодолевают несколько метров, а затем присаживаются отдохнуть.

Если лишить их такой возможности, они пролетят чуть больше километра, а затем устанут и упадут. Другие же достаточно сильны для того, чтобы перелетать на куда большие расстояния. Например, стрекоз видели посреди Карибского моря более, чем за 500 км от ближайшего участка суши.

Если учесть, что такое насекомое обладает достаточным запасом сил, чтобы вернуться назад, оно показывает фантастические результаты выносливости.

С какой скоростью летают мухи? интересные факты про полёт мух

Мухи вызывают огромный интерес у ученых, которые полагают, что это удивительные создания природы. Особе внимание уделяется их аэродинамике, скорости, а полет является уникальным.

Убедиться в этом может каждый желающий, если внимательно присмотреться к перелетам насекомого. Аэродинамика мухи проявляется в том, что летает она своеобразно: то зависает в воздухе, бросается стремительно вперед, то моментально меняет курс, переворачивается в воздухе.

Читайте также:  Чем самостоятельно обработать участок от клещей и комаров

Такое поведение заинтересовало американских ученых Корнеллского университета.

Во время исследований они зафиксировали много интересных моментов:

  1. За одну секунду насекомое делает сотни взмахов крыльев. Их перемещение напоминает движение весел гребцов. Крыло во время движения поворачивается по отношению к продольной оси и при смещении назад и вперед занимает самые разные положения.
    Полет мухи
  2. Чтобы тщательно рассмотреть, как муха летает, фазы движений, ученые в коробку с подсветкой, поместили несколько насекомых. Когда дрозофила попадала в центр, включались 3 камеры, которые снимали на стенах силуэты во время полета. Их скорость составляла 8 тыс. кадров в секунду. На стену проектировали вращающийся предмет. Как только муха его замечала, она сразу же делала резкий поворот. Траектория полета мухи весьма разнообразна. Во время полета крылья ведут себя одинаково. При повороте одно из них, при движении вперед, наклоняется к горизонтали под углом, равным 49 градусам. Если смещение происходит назад, угол несколько меньше – 40°. Второе крыло всегда находится в одном положении. Разворот тела происходит за счет угла наклона, создающего большое сопротивление.
  3. Во время разворота положение равновесия крыльев смещаются относительно друг друга на 10-15°, поэтому движение принимает ассиметричный характер.

Интересно!

Чтобы развернуться в полете при довольно большой скорости на 120 градусов, муха делает 18 взмахов крыльев всего за 80 миллисекунд.

Особенности крыльев

Большинство насекомых наделено двумя парами крыльев. В отличие от них, у мух имеется только передняя пара, поэтому они вместе с комарами относятся к отряду двукрылых. Отсутствие второй пары позволяет им делать более частые движения крыльями и маневрировать во время полётов. Среди огромного количества насекомых мухи считаются самыми ловкими летунами.

Они умеют совершать боковые и задние полёты, а также отлично держатся в воздухе вверх ногами, что позволяет им комфортно себя чувствовать, сидя на потолке. Для совершения подобных трюков у насекомых имеются жужжальца – булавовидные органы, которые возникли из задних крыльев.

Чувствительные рецепторы, которыми пронизаны жужжальца, выполняют функцию стабилизаторов. Их движения имеют ту же частоту, что и у крыльев. Особь, у которой удалены жужжальца, не способна летать. Кстати, звук, который издаётся ею при полёте, появляется не только от частых махов крыльями – это ещё и результат вибрирования жужжалец.

Особенности полета

Мухи летают зигзагами с приличной скоростью, у них нет какой-то определенной траектории, но от ряда факторов она зависит.

Направление и быстрота полета во многом определяется потребностями насекомого: чувства голода, инстинкта размножения. Маневрируют они в том случае, если видят на своем пути препятствия.

Для взлета им не нужен разгон, а чтобы сесть на поверхность, им не приходится тормозить.

Полет мухи

К основным типам полета относятся:

  • зависание в воздухе и смещение в разные стороны;
  • преодоление больших расстояний с высокой скоростью;
  • совершение различных маневров в воздухе, высокая скорость полета.

Если мухе предстоит лететь на длинные (до 2 км) расстояния, при которых приходится менять направление, она не останавливается. Полет этих насекомых до конца не изучен. Ученые и сегодня не понимают тонкости искусства подобного типа передвижения.

Интересно!

Мухи ходят вверх тормашками благодаря тому, что на их лапках имеется липкая подушечка, позволяющая удерживаться на разных видах поверхностей.

Аэродинамика мухи

Ученые сравнивают насекомое и его возможности с летающей тарелкой.

Спокойно может зависать в воздухе, совершать рывки в разные стороны, не набирая предварительно разгона, быстро срывается с места, резко приземляется, отлично держится на горизонтальной, вертикальной поверхности.

Самая важная загадка для ученых, которую еще не могли разгадать – как она держится вниз головой на потолке, а затем спокойно переворачивается во время полета.

Интересно!

Разгадав тайну аэродинамики, ученые смогут создать совершенный летательный аппарат, который станет основным военным достижением.

Траекторию полета мухи сложно вычислить. Она быстро меняет направление, летает зигзагами, вправо, влево, вниз, вверх. Быстроту, мгновенную реакцию обеспечивает сложный глаз, который позволяет видеть вокруг своей оси. Срывается в воздух еще до того, как человек порядочно замахнется.

Особенности полета:

  1. Перемещение в разные стороны, зависание, маневренность.
  2. Расположение вверх ногами.
  3. Способность лететь на большие расстояния без остановки.
  4. Высокая скорость перелета.

С мухой в аэродинамике, скорости не сравнится ни одно насекомое. Основная цель научных деятелей – разгадать тайну.

Максимальные показатели для полетов мухи

Класс насекомых необычайно разнообразен. Выделяется множество отрядов, объединенных схожими свойствами строения тела, отдельных органов, способом питания.

Муха причислена к двукрылым. Недостаток летательных органов не сказался на качестве, скорости передвижения.

Размах крыльев мухи

Отсутствие «лишней» пары крыльев позволяет творить чудеса: совершать быстрые взмахи, легко маневрировать в воздушном пространстве.

Высокую подвижность обеспечивают жужжальца, сформировавшиеся из задних крыльев. При удалении парного органа полеты прекратятся, насекомое пополнит ряды ползающих существ.

Дальность

Расстояния, на которые могут перелетать мухи, поражает многих ученых, они преодолевают до 3 км в час без остановки. Но вот чтобы пролететь данные дистанции, необходимы важные причины.

Обычно муха развивает высокие скоростные показатели, если она сильно голодна, если ей требуется отложить яйца, на этот быстрый полет ее побуждает жажда спаривания.

Насекомые начинают быстро летать при неблагоприятных погодных условиях.

Обычно активность мух наблюдается летом, они часто встречаются на улице, но в конце летнего сезона начинают перебираться в жилища людей. Также они любят обитать в хозяйственных постройках, сараях с живностью.

Высота

Двукрылые насекомые встречаются практически повсеместно. Ученые доказали: высота полета мухи ограничена. Они как птицы не поднимаются высоко в небо.

Для безбедного существования еда находится практически рядом. Добыть пропитание несложно: вокруг свалки, навозные кучи, удается полакомиться вкусным вареньем, крошками хлеба, нектаром растений.

Муха поедающая хлеб

Корм находится низко, укрытие рядом. Стремиться вверх необходимость отпадает.

Ученые специально не проводили опыты, пытаясь установить, как высоко поднимаются представители группы. Насекомые долетают до 5- 10 этажа. Жители многоэтажек утверждают, что замечали надоед на 25-28 этажах.

Исследователи комментируют необычное явление. Они утверждают, что самостоятельно насекомые на значительную высоту не поднимаются. Максимальная высота полета мухи зависит от ветра.

Виды полёта

Полёт насекомых может быть активным и пассивным

Полет во время дождя

Мелкое существо не перестает удивлять своими способностями. Ученые сравнительно недавно исследовали полет комара во время дождя, высоту перемещения.

Капля дождя имеет размеры 8 мм, вес до 100 мг, что превышает размер насекомого в несколько раз.

  • Попав на лапки, капля несколько меняет его траекторию движения, отбрасывает в сторону, крутит.
  • Если капля попадает на тело, не меняет траекторию, несет насекомое вниз на несколько метров, не позволяет подняться.
  • При попадании капли на тело насекомого, когда оно находится на твердой основе, наступает летальный исход.

Опыт проводили в специальном контейнере, где искусственно создавали дождь. Снимали происходящее камеру, после чего анализировали происходящее. Во время дождя кровососы могут летать, но их движения не имеют четкой координации, капли дождя не позволяют подниматься высоко, максимальный полет на высоте 1 м над поверхностью земли.

Строение комаров и мух различно, также отличаются они и размерами, но досаждают человеку одинаково. Последние способны подниматься значительно выше, подняться более высоко помогает ветер, да и полет мухи имеет свои особенности.

Расстояние и скорость

Большие расстояния насекомые преодолевают легко. Скорость полета мухи составляет порядка 6,4 км в час. У нее отличная реакция, в чем многие люди убедились на собственном примере, пытаясь избавиться от досадливых вредителей с помощью мухобойки или газеты.

Она способна долететь на высоту, равную 10-ти этажному зданию, что подтверждают эксперименты, проводимые учеными. Некоторые жители многоэтажных домов заявляют о том, что видели мух и на 28 этаже. В некотором роде высота полета зависит от погодных условий, в том числе от ветра.

Интересно!

комнатная муха за одну минуту может сделать 1000 взмахов. На большие расстояния насекомые практически не летают, так как в непосредственной близости имеется возможность легко найти пропитание. А вот в сельской местности они способны летать на большие расстояния в поисках навоза.

Скоростные достижения

Муха летает на расстояния до 3 км без остановки. Чтобы преодолеть такую дистанцию, нужны веские причины. Способствующими факторами являются пища, откладывание яиц, спаривание для продолжения рода, а также неблагоприятные климатические условия. К концу лета из дикой природы вредители охотно переселяются в дома человека, квартиры, хозяйственные пристройки.

Скорость полета мухи развивается до 6,4 км в час. Эта способность обеспечивает большую выживаемость в природе. Легко скрывается от врагов, находит благоприятные условия для существования, источник пищи.

Летательный аппарат чрезвычайно прост – пара прозрачных крыльев, жужжальца вместо подкрылков. Отсутствие второй пары крыльев позволяет им зависать в воздухе, легко менять траекторию, развивать скорость.

Заключение

Изредка «путешественники» поднимаются вверх на лифтах, проникают в жилье в коробках с вещами, заползают через вентиляционные шахты.

Яйца насекомых заносятся в горы, где затем появятся молодые особи. Самостоятельно взлететь на Джомолунгму мухам не суждено.

  • https://klopkan.ru/muhi/skorost-muhi-v-polyote-kakaya-maksimalnaya-i-dlya-chego-muham-bolshaya-skorost/
  • https://beyklopov.ru/moshki/obschie/polyot-muh.html
  • https://notklop.ru/muhi/2-fakty/33-skorost-muhi/
  • https://apest.ru/muhi/o-muhah/skorost-muhi/
  • https://kopejsk.ru/borba/skorost-muhi-kak-letaet-muha.html
  • https://parazitdoma.ru/drugie-parazity/skorost-muhi
  • https://TezarVape.ru/opasnye/kak-letayut-muhi.html
  • https://dezbox.ru/dezinsekciya/kakaya-skorost-poleta-muxi/
Ссылка на основную публикацию